
Diary of a 
Mod Man 
Graphing in 
Modular Arithmetic 



Modular Numbers 
• Design of system 
 Finitely many integers 
 The number of integers is the modulus, e.g. Z5 
 Counting wraps around, e.g. 0, 1, 2, 3, 4, 0, 1, 

2, 3, 4, 0, 1, 2, 3, 4, … 
 Integers outside the system are replaced, e.g. 

12 ≡ 2 (mod 5) or -6 ≡ 4 (mod 5)  

• Often called “clock” numbers 
 Normal clocks have an hour modulus of 12 and 

a minute and second modulus of 60 
 Military time has hour modulus of 24 
 Some people are proponents of a 10-hour day 



Modular Arithmetic 
• Addition 
 What is 7 + 9 (mod 12)? 

o Compare to normal clock:  “On a 12-hour clock, start at 7 
and count forward 9.  What time is it?” 

o Answer:  7 + 9 = 16 ≡ 4 (mod 12) 
 What is 7:24 + 9:53 (mod 12:60)? 

o Compare to normal clock:  “On a 12-hour:60-minute clock, 
start at 7:24 and count forward 9:53.  What time is it? 

o Answer:  7:24 + 9:53 = 16:77 ≡ 17:17 ≡ 5:17 (mod 12:60) 
o This is non-trivial to think about, and more cumbersome to 

write, so is it any wonder children have trouble mastering 
the clock? 

 Subtraction is defined, e.g. 7 – 9 ≡ 10 (mod 12) 
 



Modular Arithmetic 
• Multiplication 
 What is 10 · 3 (mod 12)? 

o Compare to normal clock:  “On a 12-hour clock, start at 10 
and triple that time.  What time is it?” 

o Answer:  10 · 3 = 30 ≡ 6 (mod 12) 
 What is 10:24 · 3 (mod 12:60)? 

o Compare to normal clock:  “On a 12-hour:60-minute clock, 
start at 10:24 and triple that time.  What time is it? 

o Answer:  10:24 · 3 = 30:72 ≡ 31:12 ≡ 7:12 (mod 12:60) 
 Division is NOT necessarily defined because the 

divisor may not have a multiplicative inverse in 
the system, e.g. 10 ÷ 3 ≡ (10 + 12n) ÷ 3 has 
no integer solution 



Modular Algebra 
• Applying the rules of normal 

algebra to a modular system at 
first seems normal 
 Solve:  x + 4 ≡ 9 (mod 12) 

o x + 4 ≡ 9  x ≡ 5 
 Solve:  5x + 4 ≡ 9 (mod 12) 

o 5x + 4 ≡ 9  5x ≡ 5  x ≡ 1 



Modular Algebra 
• But, because division may be 

involved, some results can be 
unexpected 
 Solve:  4x + 3 ≡ 11 (mod 12) 

o 4x + 3 ≡ 11  4x ≡ 8  x ≡ 2 
o 4x + 3 ≡ 11  4x ≡ 8  4x ≡ 20  x ≡ 5 
o 4x + 3 ≡ 11  4x ≡ 8  4x ≡ 32  x ≡ 8 
o 4x + 3 ≡ 11  4x ≡ 8  4x ≡ 44  x ≡ 11 



Modular Algebra 
• In the previous two problems, the 

unique solution was obtained 
when dividing by a number 
relatively prime to the modulus 

• This implies that not every 
fraction is possible in a modulus 
that is not prime 
 In mod 12: 1/1, 1/5, 1/7, and 1/11 are possible 

while 1/2, 1/3, 1/4, 1/6, 1/8, 1/9, 1/10 aren’t 



Modular Functions 
• Notation 
 Instead of f(x), let fm(x) indicate a function in 

mod m.  This notation is chosen to mirror the 
fact that we are working in Zm. 
o f12(x) = 5x + 4 is equivalent to y ≡ 5x + 4 (mod 12) 

• Graphing 
 Instead of the normal four-quadrant system, we 

need only QI, specifically Zm x Zm. 
 

 



Modular Functions 
• Examine graphs of function in Z5. 



Modular Functions 
• f5(x) ≡ x 



Modular Functions 
 Compare to f(x) = x 



Modular Functions 
• f5(x) ≡ 2x + 4 



Modular Functions 
 Compare to f(x) = 2x + 4 



 Include f(x) = 2x – 1 and f(x) = 2x – 6  

Modular Functions 



• Theoretically, f5(x) ≡ 2x + 4 could 
be modeled by any line with slope 
m ≡ 2 and any y-intercept b ≡ 4 
 f5(x) ≡ 7x – 1 
 

 
 
 

 f5(x) ≡ -3x + 9 

Modular Functions 



• Theoretically, f5(x) ≡ 2x + 4 could 
be modeled using fractions 
defined within Z5 as well 
 f5(x) ≡ -½x + 4 

Modular Functions 



Modular Functions 
• f5(x) ≡ 3 – x2 
 
 
 
                          



Modular Functions 
• f5(x) ≡ 2x 
 
 
 
                          



Modular Functions 
• f5(x) ≡ cos�x 
 
 
 
                          



Modular Functions 
• f5(x) ≡ 1/x 
 
 
 
                          



Modular Algebra 
• Can factoring be used? 
 Solve graphically:  x2 – 4 ≡ 0 (mod 5) 

o x2 – 4 ≡ 0  x ≡ 2 or x ≡ 3 
 
 
 
 
 
 
 
 
 
 
 

 Solve algebraically:  x2 – 4 ≡ 0 (mod 5) 
o x2 – 4 ≡ 0  (x + 2)(x – 2) ≡ 0  x ≡ ±2  x ≡ 2 or x ≡ 3 



Modular Algebra 
• …But when modulus is not prime, 

can it still be used? 
 Solve graphically:  x2 – 4 ≡ 0 (mod 5) 

o x2 – 4 ≡ 0  x ≡ 0 or x ≡ 2 
 
 
 
 
 

 
 
 

 Solve algebraically:  x2 – 4 ≡ 0 (mod 4) 
o x2 – 4 ≡ 0  x2 ≡ 0  x ≡ 0 
o x2 – 4 ≡ 0  (x + 2)(x – 2) ≡ 0  x ≡ ±2  x ≡ 2 

 



Modular Algebra 
• The Zero Product property is not 

true in all modular systems 
 For Z, xy = 0  x = 0 or y = 0 
 For Z5, xy ≡ 0  x ≡ 0 or y ≡ 0 
 However, for Z4, xy ≡ 0  x ≡ 0 or y ≡ 0 is 

false, since x ≡ y ≡ 2 is another solution 
 

 
 
 
 
 
 
 
 
 
 
 

          
                         



Modular Algebra 
• Can squaring be used? 
 Solve graphically:  √x ≡ 1 (mod 5) 

o √x ≡ 1  x ≡ 1 
 
 
 
 
 
 
 
 
 
 

 Solve algebraically:  √x ≡ 1 (mod 5) 
o √x ≡ 1  x ≡ 1 



Modular Algebra 
• …But the domain of the square 

root function in Z5 is not Z5 
 √2 and √3 are not defined because x2 ≡ 2 and 

x2 ≡ 3 have no solution 



Modular Algebra 
• The only operations that can be 

used in Z5 are operations that act 
cyclic on the elements of Z5 
 That is to say, the operation must be a bijection 

(one-to-one and onto) between the elements of 
the domain and the range 

 Addition, multiplication are both cyclic on Zp 
 Note that none of squaring, square rooting, 

exponentials, cosines, nor most other functions 
turn out to be cyclic 



Further Exploration 
• What about graphs of relations, 

such as conic sections? 
 Parabola:  y2 ≡ x (mod 5) 

o As might be expected, this works out to be identical to the 
square root function 

 Circle/ellipse:  x2 + y2 ≡ 1 (mod 5) 
 Hyperbola:  x2 – y2 ≡ 1 (mod 5) 



Further Exploration 
• Since fractions are possible, why 

confine to integer points? 
 f5(x) ≡ 1/x 
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